Welcome to ebm2onnx’s documentation!
Ebm2onnx
Ebm2onnx converts EBM models to ONNX. It allows to run an EBM model on any ONNX compliant runtime.
Features
Binary classification
Regression
Continuous, nominal, and ordinal variables
N-way interactions
Multi-class classification (support is still experimental in EBM)
Expose predictions probabilities
Expose local explanations
The export of the models is tested against ONNX Runtime.
Get Started
Train an EBM model:
# prepare dataset
df = pd.read_csv('titanic_train.csv')
df = df.dropna()
feature_columns = ['Age', 'Fare', 'Pclass', 'Embarked']
label_column = "Survived"
y = df[[label_column]]
le = LabelEncoder()
y_enc = le.fit_transform(y)
x = df[feature_columns]
x_train, x_test, y_train, y_test = train_test_split(x, y_enc)
# train an EBM model
model = ExplainableBoostingClassifier(
feature_types=['continuous', 'continuous', 'continuous', 'nominal'],
)
model.fit(x_train, y_train)
Then you can convert it to ONNX in a single function call:
import onnx
import ebm2onnx
onnx_model = ebm2onnx.to_onnx(
model,
ebm2onnx.get_dtype_from_pandas(x_train),
)
onnx.save_model(onnx_model, 'ebm_model.onnx')
If your dataset is not a pandas dataframe, you can provide the features’ types directly:
import ebm2onnx
onnx_model = ebm2onnx.to_onnx(
model,
dtype={
'Age': 'double',
'Fare': 'double',
'Pclass': 'int',
'Embarked': 'str',
}
)
onnx.save_model(onnx_model, 'ebm_model.onnx')
Try it live
You can live test the model conversion.
You can live test local explanations.
Supporting organizations
The following organizations are supporting Ebm2onnx:
SoftAtHome: Main supporter of Ebm2onnx development.
InterpretML: Ebm2onnx is hosted under the umbrella of the InterpretML organization.
Installation
Stable release
To install ebm2onnx, run this command in your terminal:
$ pip install ebm2onnx
This is the preferred method to install ebm2onnx, as it will always install the most recent stable release.
If you don’t have pip installed, this Python installation guide can guide you through the process.
From sources
The sources for ebm2onnx can be downloaded from the Github repo.
You can either clone the public repository:
$ git clone git://github.com/interpretml/ebm2onnx.git
Or download the tarball:
$ curl -OJL https://github.com/interpretml/ebm2onnx/tarball/master
Once you have a copy of the source, you can install it with:
$ python setup.py install
Usage
To use ebm2onnx in a project:
import ebm2onnx
Reference
Top-level package for ebm2onnx.
- ebm2onnx.get_dtype_from_pandas(df)[source]
Infers the features names and types from a pandas dataframe
Example
>>>import ebm2onnx >>> >>>dtype = ebm2onnx.get_dtype_from_pandas(my_df)
- Parameters:
df – A pandas dataframe
- Returns:
A dict that can be used as the type argument of the to_onnx function.
- ebm2onnx.to_onnx(model, dtype, name='ebm', predict_proba=False, explain=False, target_opset=None, prediction_name='prediction', probabilities_name='probabilities', explain_name='scores')[source]
Converts an EBM model to ONNX.
The returned model contains one to three output. The first output is always the prediction, and is named “prediction”. If predict_proba is set to True, then another output named “probabilities” is added. If explain is set to True, then another output named “scores” is added.
- Parameters:
model – The EBM model, trained with interpretml
dtype – A dict containing the type of each input feature. Types are expressed as strings, the following values are supported: float, double, int, str.
name – [Optional] The name of the model
predict_proba – [Optional] For classification models, output prediction probabilities instead of class
explain – [Optional] Adds an additional output with the score per feature per class
target_opset – [Optional] The target onnx opset version to use
- Returns:
An ONNX model.